Retour

Fonctions polynômes de degré 2

🎲 Quiz GRATUIT

📝 Mini-cours GRATUIT

Fonctions polynômes de degré 2 (1)

Fonctions $x\mapsto ax^2$, $a\neq 0$ un réel

  • Si $a > 0$, la courbe représentative de cette fonction est une parabole orientée vers le haut.
    Elle est située au-dessus de l’axe des abscisses.
  • Si $a < 0$, la courbe représentative de cette fonction est une parabole orientée vers le bas.
    Elle est située au-dessous de l’axe des abscisses.
    Dans tous les cas, la courbe représentative de cette fonction admet pour extremum le point O(0 ; 0) et pour axe des symétrie la droite d’équation $x = 0$.

Fonctions $x\mapsto ax^2 + b$, $a\neq 0$ et $b$ deux réels

  • Si $a > 0$, la courbe représentative de cette fonction est une parabole orientée vers le haut.
  • Si $a < 0$, la courbe représentative de cette fonction est une parabole orientée vers le bas.
    Dans tous les cas, la courbe représentative de cette fonction admet pour extremum le point S(0 ; $b$) et pour axe des symétrie la droite d’équation $x = 0$.

Exemples de représentations graphiques

 

Fonctions polynômes de degré 2 (2)

Fonctions $x\mapsto a(x - x_1)(x - x_2)$, $a\neq 0$, $x_1 < x_2$ trois réels

  • Si $a > 0$, la courbe représentative de cette fonction est une parabole orientée vers le haut.
    Elle coupe l’axe des abscisses en $x = x_1$ et $x = x_2$.
    Elle est située au-dessus de l’axe des abscisses sur les intervalles $]-\infty~;~x_1[$ et $]x_2~;~+\infty[$, et au-dessous de l’axe des abscisses sur l’intervalle $]x_1~;~x_2[$.
  • Si $a < 0$, la courbe représentative de cette fonction est une parabole orientée vers le bas.
    Elle coupe l’axe des abscisses en $x = x_1$ et $x = x_2$.
    Elle est située au-dessous de l’axe des abscisses sur les intervalles $]-\infty~;~x_1[$ et $]x_2~;~+\infty[$, et au-dessus de l’axe des abscisses sur l’intervalle $]x_1~;~x_2[$.

 

Dans tous les cas, la courbe représentative de cette fonction admet pour extremum le point $\displaystyle \mathrm S(\frac{x_1 + x_2}{2} ; \frac{-a{(x_2 - x_1)}^2}{4})$ et pour axe des symétrie la droite d’équation $\displaystyle x = \frac{x_1 + x_2}{2}$.

Exemples de représentations graphiques

Nomad+, Le pass illimité vers la réussite 🔥

NOMAD EDUCATION

L’app unique pour réussir !