Systèmes de numération
I. Le code binaire (ou Base $2$)
Un ordinateur est une machine qui manipule des valeurs numériques représentées sous forme binaire. Le langage binaire permet d'utiliser deux chiffres (0 et 1) pour faire des nombres : ces deux chiffres sont appelés des bits ("binarydigit"). Il permet de représenter numériquement des informations aussi variées que des nombres, des sons, des images ou des vidéos.
$2^{10}$ bits = 1024 bits = 1 Ki bits.
II. Le code hexadécimal (ou Base $16$)
Le code binaire nécessaire à l'expression de signaux numériques (logiques) présente l'inconvénient d'avoir des nombres de grandes tailles. Le code hexadécimal allie facilité de conversion (binaire/hexa) et faible dimension des nombres.
Base $16$ : {$0$,$1$,$2$,$3$,$4$,$5$,$6$,$7$,$8$,$9$,$A$,$B$,$C$,$D$,$E$,$F$}
($10$,$11$,$12$,$13$,$14$,$15$)
III. La conversion décimal / hexadécimal
La première méthode consiste à faire des divisions successives par $16$ (au lieu de $2$ dans la conversion précédente). Attention la lecture se fait en sens inverse comme pour la conversion ci-dessus.
La deuxième méthode consiste à convertir dans un premier temps le nombre décimal en binaire puis d'exprimer en hexadécimal chaque quartet.
Vérifions la conversion : $\mathrm{429(10)=1AD(16)}$
IV. La conversion hexadécimal / binaire
En base $16$, il suffit de remplacer chaque chiffre hexadécimal par son équivalent binaire.
Exemple: $\mathrm{20B9(16)\rightarrow 0010~0000~1011~1010(2) }$