I. Baat yi ñuy jëfëndikoo

Taxawinu (Sinus) bènn angal wu jub

Ci bènn ñettkoñ wu jub, dèes na tuddee taxawinu bènn angal wu xatt (wala wu nattam), xaajaleek guddaayu wet gi jakkarlook moom ci guddaayuk janookoñjub bi.  

$$\rm\sin \widehat{A B C}=\dfrac{\text { Wet wi jakkarlook } \widehat{A B C}}{\text { Janookoñjub gi }}$$

Ab misaal :

Ci ñettkoñ bii di $\mathrm{ABC}$ nga xamne da fa jubkoñ ci $\mathrm{B}$, da ñuy am : $\rm\sin \widehat{B A C}=\dfrac{\mathrm{BC}}{\mathrm{AC}}$.

Tëddinu (cosinus) bènn angal bu xatt

Ci bènn ñettkoñ wu koñjub, dèes na tuddee tëddinu  bènn angal wu xatt (wala wu nattam), xaajaleek guddaayu wet gi feetewoo ak moom ci guddaayuk janookoñjub bi. $$\rm \cos \widehat{A B C}=\dfrac{\text {Wet wi feetewoom } \widehat{A B C}}{\text { Janookoñjub gi }}$$

Felleesuk (tangente) bènn angal bu xatt

Ci bènn ñettkoñ wu koñjub, dèes na tuddee felleesuk  bènn angal wu xatt (wala wu nattam), xaajaleek guddaayu wet gi jakkarlook moom ci wet gi feetewoo ak moom.

Ci ñettkoñ gii di $\mathrm{ABC}$ nga xamne da af jubkoñ ci $\mathrm{B}$, da ñuy am :

$$\begin{array}{l}\rm\tan \widehat{BAC} & =\rm\dfrac{\text {Wet gi feewëlook } \widehat{B AC}}{\text {Wet gi feeteek } \widehat{B A C}}\\& =\rm\dfrac{B C}{A B}\end{array}$$

II. Ay jagle

Jangat ci digante tëddin ; taxawin ak felleesu

Felleesuk bènn angal bu xatt mu ngi tollook xaajaleek taxawinu angal bòbu ak tëddinam.
Ñu waxee ko neneen ; su $\rm\widehat{A}$ nekkee bènn angal bu xatt, da ñuy am : $\rm\tan \widehat{A}=\dfrac{\sin \widehat{A}}{\cos \widehat{A}}$.

Tëddin ak taxawinu ñaari angal yu mottaliwante

Su ñaari angal mottaliwantee, taxawinu kènn ki da fay tollook tëddinu keneen ki.
Ñu waxee ko neneen, su fekkee ne $\rm \widehat{A}$ ak $\rm\widehat{B}$ da ñoo nekk ñaari angal yoo xamne da ñuy melni mes $\rm\widehat{A}+ mes \widehat{B}=90^{\circ}$ kon : $\rm\sin \widehat{A}=\cos \widehat{B}$ te $\rm\cos \widehat{A}=\sin \widehat{B}$.

Jokkaloo bu am solo

Angal bu xatt boo jël nga xamne nattam mooy $a^{\circ}$, da ñuy am :

  • $0 < \sin a^{\circ} < 1$ ;
  • $0 < \cos a^{\circ} < 1$ ;
  • $\sin ^2 a^{\circ}+\cos ^2 a^{\circ}=1$.

III. Ay njëkk yu ñu mana seetlu

$\rm \widehat A$ $0°$ $30°$ $45°$ $60°$ $90°$
$\sin\rm\widehat A$ $0$ $\dfrac{1}{2}$ $\dfrac{\sqrt 2}{2}$ $\dfrac{\sqrt 3}{2}$ $1$
$\cos\rm\widehat A$ $1$ $\dfrac{\sqrt 3}{2}$ $\dfrac{\sqrt 2}{2}$ $\dfrac{1}{2}$ $0$
$\tan\rm\widehat A$ $0$ $\dfrac{\sqrt 3}{3}$ $1$ $\sqrt 3$ $x$