Xamale
Ab wet-yu-làŋ mooy bènn ñeentikoñ boo xamne wetam yi feewëloo da ñoo wet-làŋ
Ay jagle
1) Ci bènn wet-yu-làŋ, galaŋ yi da ñuy dogoo ci seen digg.
Tomb bòbu da fay nekk diggu safaanook jàkkaarle bu wet-yu-làŋ bi.
2) Ci bènn wet-yu-làŋ, wet yi feewëloo da ñuy yemoo guddaay.
$\rm ABCD$ ab wet-yu-làŋ la, kon $\rm AB = DC$ te $\rm AD = BC$.
3) Ci bènn wet-yu-làŋ, ñaari angal yu feewëloo da ñuy yem natt.
Ci bènn wet-yu-làŋ, ñaari angal yu toftalante da ñuy ëppalante.
$\mathrm{ABCD}$ ab wet-yu-làŋ la, kon $\rm\widehat{A}=\rm\widehat{C}$ te $\rm\widehat{B}=\rm\widehat{D}$ :
- $\rm\widehat{A}+\widehat{B}=180^{\circ}$ ;
$\rm\widehat{B}+\widehat{C}=180^{\circ}$ ;
$\rm\widehat{C}+\widehat{D}=180^{\circ}$ ;
$\rm\widehat{D}+\widehat{A}=180^{\circ}$.
Xammeekuk bènn wet-yu-làŋ
1) Su wet yi feewëloo ci bènn ñeentikoñ yëpp da ñoo wet-làŋ, kon ñeentikoñ bi ab wet-yu-làŋ la.
$\rm (AB) // (D C)$ et $\rm (A D) / /(B C)$, kon $\rm A B C D$ ab wet-yu-làŋ la.
2) Su galaŋu bènn ñeentikoñ dogoo ci seen digg, kon ab wet-yu-làŋ la.
$\rm O$ mooy digguk $\rm [A C]$ te $\rm O$ mooy digguk $\rm [BD]$, kon $\rm ABCD$ ab wet-yu-làŋ la.
3) Su bènn ñettkoñ amee ay angal yu feewëloo yu yem natt ñaar ñaar, kon ab wet-yu-làŋ la.
4) Su fekke ne ci bènn ñeentikoñ, ñaari dendaleek angal yu toftalante yu nekk da ñoo dolliwante, ñeentikoñ bòbu ab wet-yu-làŋ la.
$\rm\widehat{A}=\rm\widehat{C}$ te $\rm\widehat{B}=\rm\widehat{D}$, kon $\mathrm{ABCD}$ ab wet-yu-làŋ la.
- $\rm\widehat{A}+\widehat{B}=180^{\circ}$ ;
- $\rm \widehat{B}+\widehat{C}=180^{\circ}$ ;
- $\rm \widehat{C}+\widehat{D}=180^{\circ}$ ;
- $\rm \widehat{D} + \widehat{A}=180^{\circ}$.
Yaatuwaayuk bènn wet-yu-làŋ
Su $\rm ABCD$ doonee bènn wet-yu-làŋ, kon $\rm \text{Yaatuwaay} (A B C D)$ $=\text {sukkëndikukaay} \times \text {kawewaay}=$ $\rm D C \times A H$.