Somme des angles d’un triangle

Dans un triangle ; la somme des angles est égale à 180°

Autrement dit, si ABC est un triangle, alors mesˆA+mesˆB+mesˆC=180°.

Droites remarquables

  • Dans un triangle les trois médiatrices sont concourantes en un point. 
    Ce point est le centre du cercle circonscrit au triangle.
    Autrement dit, ce cercle passe par les trois sommets du triangle.
  • Dans un triangle les trois hauteurs sont concourantes en un point.
    Ce point est l’orthocentre du triangle.

Triangle rectangle

  1. Dans un triangle rectangle, les angles aigus sont complémentaires.
    Autrement dit, si ABC est un triangle rectangle en A, alors ^ABC+^ACB=90°.
  2. Dans un triangle rectangle, le cercle circonscrit a pour centre le milieu de I'hypoténuse.
  3. Dans un triangle rectangle, le milieu de l'hypoténuse est équidistant des sommets du triangle.

Reconnaissances d'un triangle rectangle

  • Si un triangle a deux angles complémentaires, alors c'est un triangle rectangle.
    Autrement dit, si ABC est un triangle et ˆB+ˆC=90°, alors ABC est rectangle en A.
  • Si on joint un point d'un cercle aux extrémités d'un de ses diamètres ne contenant pas ce point, alors on obtient un triangle rectangle.
    Autrement dit, si ABC est un triangle, A(C) et [BC] est un diamètre de (C), alors ABC est rectangle en A
  • Si dans un triangle, le milieu d'un des côté est équidistant de ses sommets, alors ce triangle est rectangle.
    Autrement dit, si ABC est un triangle et I milieu [BC] et IA=IB=IC, alors ABC est rectangle en A.

Triangle isocèle

Un triangle isocèle a un axe de symétrie.

Dans un triangle isocèle, les deux angles à la base sont égaux. ABC est isocèle en A, donc ˆB=ˆC.

L'axe de symétrie est à la fois :

  • médiatrice de la base,
  • bissectrice du sommet principal,
  • hauteur et médiane du sommet principal.

Reconnaissance d'un triangle isocèle

  • Si un triangle a un axe de symétrie, alors il est isocèle.
    Autrement dit, si ABC est un triangle et (Δ) est un axe de symétrie de ABC, alors ABC est isocèle.
  • Si un triangle a deux angles de même mesure, alors il est isocèle.
    Autrement dit, si ABC est un triangle et si ˆB=ˆC, alors ABC est isocèle en A.

Triangle équilatéral

Un triangle équilatéral a trois axes de symétrie qui sont les médiatrices de ses côtés.

  • Si un triangle est équilatéral, alors ses trois angles sont égaux (60° chacun).
    Autrement dit, si ABC est un triangle équilatéral, alors ˆA=ˆB=ˆC=60°.

Le point de rencontre des trois axes de symétrie est à la fois :

  • centre du cercle circonscrit,
  • orthocentre.

Reconnaissance d'un triangle équilatéral

  • Si un triangle a deux axes de symétrie, alors il est équilatéral. Autrement dit, si (Δ) et (Δ) sont des axes de symétrie du triangle ABC, alors ABC est équilatéral.
  • Si un triangle a trois angles égaux, alors il est équilatéral.
    Autrement dit, si ABC est un triangle et si ˆA=ˆB=ˆC, alors il est équilatéral.