Puissances de 10 :
$10^0 = 1$ ; $10^1 = 10$.
Pour tous $m$ et $n$ nombres entiers relatifs :
\[\begin{array}{ll}\displaystyle 10^{-n} = \frac{1}{10^{n}}~ ;\\
10^{n}\times 10^{m} = 10^{m +n}~ ;\\
\displaystyle \frac{10^{m}}{10^{n}} = 10^{m-n}~ ;\\
{\left(10^{m}\right)}^{n} = 10^{m \times n}.\end{array}\]
Exemples :
$10^4 \times 10^{-2} = 10^{4+(-2)}=10^2$ ;
$(10^3)^2 = 10^{3\times 2} = 10^6$ ;
$\displaystyle \frac{10^2}{10^5} = 10^{2-5} = 10^{-3}$
Écriture scientifique d'un nombre
L’écriture scientifique d’un nombre est celle de la forme $a \times 10^p$ avec $1 \le a \lt 10$ et $p$ un nombre entier relatif.
Exemples :
$2, 017 \times 10^3$ est l’écriture scientifique du nombre $2\: 017$ ;
$1,9 \times 10^{-2}$ est l’écriture scientifique du nombre $0,019$.