Valeurs remarquables
Cosinus et sinus d’angles associés
Pour tout nombre réel $x$,
$\cos(-x) = \cos(x)$ ;
$\displaystyle \cos(x + \frac{\pi}{2}) = -\sin(x)$ ;
$\cos(x + \pi) = -\cos(x)$ ;
$\displaystyle \cos(x - \frac{\pi}{2}) = \sin(x)$ ;
$\sin(-x) = -\sin(x)$ ;
$\displaystyle \sin(x + \frac{\pi}{2}) = \cos(x)$ ;
$\sin(x + \pi) = -\sin(x)$ ;
$\displaystyle \sin(x - \frac{\pi}{2}) = -\cos(x)$.
Propriétés
$-1 \leq \cos(x) \leq 1$ ;
$-1 \leq \sin(x) \leq 1$ ;
$\cos^2(x) + \sin^2(x) = 1$.