Retour

Fonctions

📝 Mini-cours GRATUIT

Notion de fonction

Définition d'une fonction

Pour définir une fonction numérique, on associe à un nombre réel $x$ d’une partie D de $\mathbb{R}$ un unique réel $y$ que l’on note $y = f(x)$.

$y$ est l’image de $x$ par $f$ et $x$ est un antécédent de $y$ par $f$.

L’ensemble de définition de $f$ est l’ensemble des nombres réels pour lesquels $f$ est définie.

Fonction croissante, décroissante

Une fonction $f$ est strictement croissante (resp. croissante) sur l'intervalle $\rm I$ si pour tous $(a, b)$ de $\rm I$ tels que $a < b$, on a $f(a) < f(b)$ (resp. $f(a) \leq f(b)$).
Une fonction $f$ est strictement croissante (resp. décroissante) sur l'intervalle $\rm I$ si pour tous $(a, b)$ de $\rm I$ tels que $a < b$, on a $f(a) > f(b)$ (resp. $f(a) \geq f(b)$).

Fonctions linéaire et affine

Fonction linéaire

La fonction linéaire de coefficient $a$ est la fonction qui à $x$ associe $a \times x = ax$.

On la note $f(x) = ax$ ou $f : x \mapsto ax$.

La représentation graphique d’une fonction linéaire de coefficient $a$ est une droite.

Elle passe par l’origine $\rm O$ du repère et par le point $(1~ ; a)$ où $a$ est le coefficient directeur de cette droite.

Fonction affine

Une fonction affine est une fonction qui à $x$ associe $a\times x + b = ax+b$. 

On la note $f(x) = ax + b$ ou $f : x \mapsto ax + b$.

La représentation graphique d’une fonction affine est une droite qui passe par le point $(0~ ; b)$.

$a$ est le coefficient directeur de la droite et $b$ son l’ordonnée à l’origine.

Fonction carré

Fonction carré

La fonction carré $(x\mapsto x^2)$ est définie sur l’intervalle $]-\infty~ ; +\infty[$.

Elle est strictement décroissante sur l'intervalle $]-\infty~ ; 0]$ et strictement croissante sur l'intervalle $[0~ ; +\infty[$.

Sa représentation graphique est une parabole.

Nomad+, Le pass illimité vers la réussite 🔥

NOMAD EDUCATION

L’app unique pour réussir !