Pour tout ce qui suit, on munit l'espace d’un repère orthonormé (O ; →i ; →j ; →k).
Expression analytique du produit scalaire dans un repère orthonormé
Pour →u(x;y;z) et →v(x′;y′;z′), deux vecteurs de l'espace : →u⋅→v=xx′+yy′+zz′ qui est un nombre réel.
Propriétés du produit scalaire
Pour →u, →v et →w trois vecteurs de l'espace et un nombre réel k :
→u⋅→v=→v⋅→u ; (k→u)⋅→v=→u⋅(k→v)=k(→u⋅→v).
Norme d’un vecteur
Pour →u(x;y;z) un vecteur de l'espace :
‖.
Distance entre deux points
Pour et , deux points de l'espace :
Vecteurs orthogonaux
Deux vecteurs de l'espace sont orthogonaux si et seulement si leur produit scalaire est nul.