Fonction
|
Fonction dérivée
|
Conditions, intervalle
|
$\color{black}{x \mapsto c}$ ($\color{black}{c}$ constante)
|
$\color{black}{x \mapsto 0}$
|
$\color{black}{\mathbb R}$
|
$\color{black}{x \mapsto ax + b}$ ($\color{black}{a}$, $\color{black}{b}$ constantes)
|
$\color{black}{x \mapsto a}$
|
$\color{black}{\mathbb R}$
|
$\color{black}{x \mapsto x^n}$
|
$\color{black}{x \mapsto nx^{n-1}}$
|
$\color{black}{n \in \mathbb N^*}$, $\color{black}{x \in \mathbb R}$
|
$\color{black}{\displaystyle x \mapsto \frac{1}{x^n}}$
|
$\color{black}{\displaystyle x\mapsto - \frac{n}{x^{n+1}}}$
|
$\color{black}{n \in \mathbb N^*}$, $\color{black}{x \in \mathbb R}$
|
$\color{black}{x \mapsto \cos (x)}$
|
$\color{black}{x \mapsto -\sin(x)}$
|
$\color{black}{\mathbb R}$
|
$\color{black}{x \mapsto \cos}$ $\color{black}{(ax + b)}$
|
$\color{black}{x \mapsto -a \sin}$ $\color{black}{(ax + b) + c}$
|
$\color{black}{\mathrm I = \mathbb R}$, $\color{black}{(a~; b~; c)\in \mathbb R^3}$
|
$\color{black}{x \mapsto \sin (x)}$
|
$\color{black}{x \mapsto \cos(x)}$
|
$\color{black}{\mathbb R}$
|
$\color{black}{x \mapsto \sin}$ $\color{black}{(ax + b)}$
|
$\color{black}{x \mapsto a \cos}$ $\color{black}{(ax + b) + c}$
|
$\color{black}{\mathrm I = \mathbb R}$, $\color{black}{(a~; b~; c)\in \mathbb R^3}$
|
$\color{black}{x \mapsto \mathrm e^x}$
|
$\color{black}{x \mapsto \mathrm e^x}$
|
$\mathbb R$
|
$\color{black}{x \mapsto \ln (x)}$
|
$\color{black}{\displaystyle x \mapsto \frac{1}{x}}$
|
$\mathbb R^*_+$
|
$\color{black}{\mathrm e^u}$
|
$\color{black}{u' \mathrm e^u}$
|
|
$\color{black}{(u^n)}$
|
$\color{black}{nu'u^{n-1}}$
|
$\color{black}{n \in \mathbb N}$ ou si $\color{black}{n \in \mathbb Z^-}$, $\color{black}{u(x) \neq 0}$
|
$\color{black}{\ln(u)}$
|
$\color{black}{\displaystyle \frac{u'}{u}}$
|
$\color{black}{\rm I}$ où $\color{black}{u}$ est strictement positive
|
$\color{black}{x \mapsto (g \circ f)(x)}$ $\color{black}{= g(f(x))}$
|
$\color{black}{x \mapsto(g \circ f)'(x) }$ $\color{black}{= (g' \circ f)(x)\times f'(x)}$ $\color{black}{= g'(f(x))\times f'(x)}$
|
$\color{black}{f}$ dérivable sur $\color{black}{\rm I}$, $\color{black}{f(\rm I) \subset J}$ intervalle, $\color{black}{g}$ dérivable sur $\color{black}{\rm J}$
|