On veut résoudre $\alpha(x)y'+\beta(x) y = \gamma(x)$.
- $\rm 1^{ère}$ étape : on met éventuellement l'équation sous forme résolue c'est-à-dire le coefficient devant $y'$ est égal à $1$. On détermine le ou les intervalles de résolution.
Sur un intervalle sur lequel la fonction $x \mapsto \alpha(x)$ ne s'annule pas, l'équation à résoudre est équivalente en divisant par $\alpha(x)$ :
$(\mathrm E) : y'+a(x) y =b(x)$ (avec $\displaystyle{a(x) = \frac{\beta(x)}{\alpha(x)}}$ et $\displaystyle{b(x) = \frac{\gamma(x)}{\alpha(x)}}$).
- $\rm 2^{ème}$ étape : on résout $(\mathrm E_0) : y'+a(x)y=0$, l'équation homogène associée, sur chaque intervalle de résolution $\mathrm I$. Les solutions de $(\mathrm E_0)$ sont données par $x \in \mathrm I \mapsto \lambda \mathrm e^{-\int a(x) {\rm d}x}$ avec $\lambda$ une constante réelle.
- $\rm 3^{ème}$ étape : on cherche une solution particulière de $(\mathrm E)$. Trois possibilités :
- La solution particulière est évidente.
- On utilise le principe de superposition des solutions. Si le second membre est compliqué et se décompose en $\lambda_1 b_1(x) + \lambda_2 b_2(x)$ alors le principe de superposition des solutions nous dit que si $y_1$ est une solution de l'équation $(\mathrm E_1): y'+a(x) y =b_1(x)$ et $y_2$ est une solution de l'équation $(\mathrm E_2): y'+a(x) y =b_2(x)$ alors la fonction $x \mapsto \lambda_1 y_1(x) + \lambda_2 y_2(x)$ est une solution de l'équation $(\mathrm E)$.
- On utilise la méthode de variation de la constante qui consiste à chercher une solution particulière de $(\mathrm E)$ sous la forme $y(x) = \mu(x)y_0(x)$ avec $y_0(x)$ une solution de $(\mathrm E_0)$. On a alors $\displaystyle{\mu = \int \frac{b(x)}{y_0(x)} {\rm d}x}$.
- $\rm 4^{ème}$ étape : on écrit l'ensemble des solutions de $(\mathrm E)$. La théorie nous dit que les solutions de $(\mathrm E)$ s'obtiennent en additionnant toutes les solutions de $(\mathrm E_0)$ et une solution particulière de $(\mathrm E)$.