Fonctions |
Primitives |
Intervalles |
$x \mapsto a$
|
$\color{black}{x \mapsto ax + b}$
|
$\color{black}{\rm I= \mathbb R}$, $\color{black}{(a~;b) \in \mathbb R^2}$
|
$\color{black}{x \mapsto x^n}$
|
$\color{black}{\displaystyle x \mapsto \frac{x^{n+1}}{n + 1} + c}$
|
$\color{black}{n \in \mathbb Z\backslash\{-1\}}$, $\color{black}{c\in \mathbb R}$
Si $\color{black}{n < 0}$, $\color{black}{\rm I = \mathbb R}$
Si $\color{black}{n < 0}$, $\color{black}{\rm I = ] -\infty~; 0[}$ ou $\color{black}{]0~; +\infty[}$
|
$\color{black}{x \mapsto \cos(x)}$
|
$\color{black}{x \mapsto \sin(x) +c}$
|
$\color{black}{\rm I = \mathbb R}$, $\color{black}{c \in \mathbb R}$
|
$\color{black}{x \mapsto \cos}$ $\color{black}{(ax + b)}$
|
$\color{black}{\displaystyle x \mapsto \frac{1}{a}\sin}$ $\color{black}{(ax + b) + c}$
|
$\color{black}{\rm I = \mathbb R}$, $\color{black}{(a~;b~c)\in \mathbb R^3}$, $\color{black}{a \neq 0}$
|
$\color{black}{x \mapsto \sin(x)}$
|
$\color{black}{x \mapsto - \cos(x) + c}$
|
$\color{black}{\rm I = \mathbb R}$, $\color{black}{c \in \mathbb R}$
|
$\color{black}{x \mapsto \sin}$
$\color{black}{(ax + b)}$
|
$\color{black}{\displaystyle x \mapsto -\frac{1}{a}\cos}$
$\color{black}{(ax + b) + c}$
|
$\color{black}{\rm I = \mathbb R}$, $\color{black}{(a~;b~c)\in \mathbb R^3}$, $\color{black}{a \neq 0}$
|
$\color{black}{\displaystyle x \mapsto \frac{1}{x}}$
|
$\color{black}{x \mapsto \ln(x) + c}$
|
$\color{black}{\rm I = ]0~;+\infty[}$, $\color{black}{c \in \mathbb R}$
|
$\color{black}{x \mapsto \mathrm e^x}$
|
$\color{black}{x \mapsto \mathrm e^x + c}$
|
$\color{black}{\rm I = \mathbb R}$, $\color{black}{c \in \mathbb R}$
|
$\color{black}{u' \times u^n}$
|
$\color{black}{\displaystyle \frac{u^{n+1}}{n+1} + \rm C}$
|
$\color{black}{n \in \mathbb N}$ ou si $\color{black}{n \in \mathbb Z^- \backslash\{-1\}}$, $\color{black}{u(x) \neq 0}$
|
$\color{black}{u' \times \mathrm e^u}$
|
$\color{black}{\mathrm e^u+ \mathrm C}$
|
|
$\color{black}{\displaystyle \frac{u'}{u}}$
|
$\color{black}{\ln(u)+ \mathrm C}$
|
Intervalle tel que $\color{black}{u(x) > 0}$
|