Définition
L’unique fonction $f$ définie et dérivable sur $\mathbb{R}$ vérifiant $f’ = f$ et $f(0) = 1$ est la fonction exponentielle.
Elle est notée $x \mapsto exp(x) = {\mathrm{e}}^x$.
Propriétés algébriques
${\mathrm{e}}^0 = 1$
Pour tous nombres réels $x$ et $y$ :
${\mathrm{e}}^{x + y} = {\mathrm{e}}^x \times {\mathrm{e}}^y$ ;
$\displaystyle {\mathrm{e}}^{-x} = \frac{1}{{\mathrm{e}}^x}$ ;
$\displaystyle {\mathrm{e}}^{x - y} = \frac{{\mathrm{e}}^x}{{\mathrm{e}}^y}$ ;
${({\mathrm{e}}^x)}^n = {\mathrm{e}}^{n x}$ ($n$ entier naturel).
Fonction exponentielle
🎲 Quiz GRATUIT
Fonction exponentielle 1
Fonction exponentielle 2
Fonction exponentielle 3
Fonction exponentielle 4
📝 Mini-cours GRATUIT
Exponentielle 2
Propriétés graphiques
La fonction exponentielle est définie, dérivable, strictement croissante et strictement positive sur l'ensemble des nombres réels.
La fonction exponentielle est sa propre dérivée.
Représentation graphique
Exponentielle 3
Suites $({\mathrm{e}}^{na})$ ($a$ réel)
Pour $a$ un nombre réel, la suite $({\mathrm{e}}^{na})$ définie sur $\mathbb{N}$ est une suite géométrique.
En effet, pour tout nombre réel $a$ et tout entier naturel $n$, $({\mathrm{e}}^{na}) = {({\mathrm{e}}^a)}^n$.
Pour tout entier naturel $n$, nous avons donc :
${\mathrm{e}}^{(n+1)a} = {({\mathrm{e}}^a)}^{n+1}= {({\mathrm{e}}^a)}^n \times {\mathrm{e}}^a = {\mathrm{e}}^a \times {({\mathrm{e}}^a)}^n = {\mathrm{e}}^a \times {\mathrm{e}}^{na}.$
La suite $({\mathrm{e}}^{na})$ définie sur $\mathbb{N}$ est donc une suite géométrique de raison ${\mathrm{e}}^a$ (qui ne dépend pas de $n$) et de premier terme ${\mathrm{e}}^0 = 1$.
Fonctions $t \mapsto {\mathrm{e}}^{-kt}$ et $t\mapsto {\mathrm{e}}^{kt}$ ($k > 0$)
Pour $k > 0$ un nombre réel fixé.
La fonction $t\mapsto {\mathrm{e}}^{kt}$ est définie, strictement croissante (croissance exponentielle) et positive sur l'ensemble des nombres réels.
La fonction $t\mapsto {\mathrm{e}}^{-kt}$ est définie, strictement décroissante (décroissance exponentielle) et positive sur l'ensemble des nombres réels.
Exemples de représentations graphiques :
📺 Vidéos GRATUIT
🍀 Fiches de révision PREMIUM
Fonctions exponentielles et fonctions associées
Fonctions polynômes du second degré
Fonctions trigonométriques
Formulaire d’analyse
Formulaire de géométrie
Les figures de géométrie
Formulaire d’algèbre
Formulaire de probabilités-statistiques
📄 Annale PREMIUM
Sujet zéro — Spécialité Mathématiques