go-back Retour

Équations différentielles linéaires

📝 Mini-cours GRATUIT

Parcours Méthodologique : Equations différentielles linéaires scalaires

K=R ou C
I est un intervalle de R.

Méthode 1 : Résoudre une équation linéaire d'ordre 1

Définition :

Une équation différentielle linéaire scalaire d'ordre 1 est de la forme (E):x=a(t)x+b(t) avec a,b fonctions continues de I vers K et pour inconnue x fonction dérivable de I vers K.

Théorème :

Soit (t0,x0)I×K.
Le problème de Cauchy {x=a(t)x+b(t)(E)x(t0)=x0(condition initiale) possède une unique solution définie sur I.

Théorème :

(E0):x=a(t)x est l'équation homogène associée à (E).
L'ensemble des solutions sur I de l'équation homogène est la droite vectorielle engendrée par teA(t) avec A primitive de la fonction a.

Méthode :

Pour résoudre (E) une fois le type d'équation identifié :

  • On résout l'équation homogène (E0) pour obtenir la solution homogène x0.
  • On cherche une solution particulière à (E) : xp.
  • La solution générale de (E) est x(t)=x0(t)+xp(t).

Théorème :

Si la solution homogène est de la forme x0(t)=Cφ(t), on peut utiliser la méthode de variation des constantes en cherchant une solution particulière de la forme xp(t)=C(t)φ(t).

Méthode 2 : Résoudre une équation linéaire d'ordre 2

Définition :

Une équation différentielle linéaire scalaire d'ordre 2 est de la forme (E):x=a(t)x+b(t)x+c(t) avec a,b,c fonctions continues de I vers K et pour inconnue x fonction deux fois dérivable de I vers K.

Théorème :

Soit (t0,x0,x0)I×K2.
Le problème de Cauchy {x=a(t)x+b(t)x+c(t)(E)x(t0)=x0(condition initiale)x(t0)=x0(condition initiale) possède une unique solution définie sur I.

Théorème :

(E0):x=a(t)x+b(t)x est l'équation homogène associée à (E).
L'ensemble des solutions sur I de l'équation homogène est un sous-espace vectoriel de C2(I,K) de dimension 2.

Méthode :

Pour résoudre (E) une fois le type d'équation identifié :

  • On résout l'équation homogène (E0) pour obtenir la solution homogène x0.
  • On cherche une solution particulière à (E) : xp.
  • La solution générale de (E) est x(t)=x0(t)+xp(t).

Cas des équations à coefficients constants :

Soit (E):y+ay+by=c avec a,bK et c:IK continue.
Pour résoudre l'équation homogène (E0):y+ay+by=0.

On résout l'équation caractéristique associée r2+ar+b=0 (Ec) :

  • Si K=C, si Δ0, (Ec) a deux solutions α,β : x0(t)=λ1eαt+λ2eβt avec λ1,λ2C.
  • Si K=C, si Δ=0, (Ec) a une solution double α : x0(t)=(λ1+tλ2)eαt avec λ1,λ2C.
  • Si K=R, si Δ>0, (Ec) a deux solutions α,β : x0(t)=λ1eαt+λ2eβt avec λ1,λ2R.
  • Si K=R, si Δ=0, (Ec) a une solution double α : x0(t)=(λ1+tλ2)eαt avec λ1,λ2R.
  • Si K=R, si Δ<0, (Ec) a deux solutions conjuguées α±iβ : x0(t)=(λ1cos(βt)+λ2sin(βt))eαt avec λ1,λ2R.

Théorème :

Soit (E):x=a(t)x+b(t)x+c(t).
Si la solution homogène est de la forme x0(t)=λφ(t)+μψ(t), avec λ,μR, on peut utiliser la méthode de variation des constantes en cherchant une solution particulière de la forme xp(t)=λ(t)φ(t)+μ(t)ψ(t) avec λ,μ fonctions dérivables.

Méthode 3 : Résoudre des équations linéaires d'ordre n

Définition :

Une équation différentielle linéaire scalaire d'ordre n est de la forme (E):x(n) =an1(t)x(n1)+an2(t) x(n2)++a1(t)x+a0(t)x+b(t) avec a0,a1,,an,b fonctions continues de I vers K et pour inconnue x fonction n-fois dérivable de I vers K.

Théorème :

Soit (t0,x0,,xn1)I×Kn.
Le problème de Cauchy {x(n)=an1(t)x(n1)+an2(t)x(n2)++a1(t)x+a0(t)x+b(t)(E)x(k)(t0)=xk pour 0kn1(condition initiale) possède une unique solution définie sur I.

Théorème :

(E0):x(n)=an1(t)x(n1)+an2(t) x(n2)++a1(t)x+a0(t)x est l'équation homogène associée à (E).
L'ensemble des solutions sur I de l'équation homogène est un sous-espace vectoriel de dimension n de Cn(I,K).

Méthode :

Pour résoudre (E) une fois le type d'équation identifié :

  • On résout l'équation homogène (E0) pour obtenir la solution homogène x0.
  • On cherche une solution particulière à (E) : xp.
  • La solution générale de (E) est x(t)=x0(t)+xp(t).

Parcours Méthodologique : Equations différentielles linéaires vectorielles

$\mathbb K=\mathbb R$ ou $\mathbb C$
$\rm I$ est un intervalle de $\mathbb R$.
$\rm E$ est un $\mathbb K$-espace vectoriel de dimension finie $\rm n\in\mathbb N^*$.

Méthode 1 : Résoudre une équation vectorielle d'ordre 1

Définition :

Une équation différentielle linéaire vectorielle d'ordre 1 est de la forme $(\mathrm E) : x'=\mathrm {a(t)}(x)+\rm b(t)$ avec $\rm a$ fonction continue de $\rm I$ vers $\rm \mathcal{L}(E)$, $\rm b$ fonction continue de $\rm I$ vers $\rm E$ et pour inconnue $x$ fonction dérivable de $\rm I$ vers $\rm E$.

Remarque :

Si on note $\rm e=(e_1,\ldots,e_n)$ base de $\rm E$, l'équation vectorielle $\rm (E)$ est équivalente à l'équation matricielle : $\rm X'=A(t)X+B(t)$ avec $\rm A(t)=Mat_e(a(t))$ (matrice carrée de taille $\rm n$), $\rm B(t)=Mat_e(b(t))$ (matrice colonne de taille $\rm n\times 1$) et $\rm X(t)=Mat_e(x(t))$ (matrice colonne de taille $\rm n\times 1$).

Théorème :

Soit $(\mathrm t_0,x_0)\rm \in I\times E$.
Le problème de Cauchy $\left\{\begin{array}{ll} x'=\mathrm{a(t)}(x)+\rm b(t) & \scriptstyle (\rm E) \\ x(\mathrm t_0)=x_0 & \scriptstyle \text{(condition initiale)}\end{array}\right.$ possède une unique solution définie sur $\rm I$.
Cette solution vérifie $x(\mathrm t)=x_0+\displaystyle \int_{\mathrm t_0}^t (\mathrm{a(u)}(x(u))+\mathrm b(u)) \mathrm du$.

Théorème :

$(\mathrm E_0) : x'=\mathrm {a(t)}(x)$ est l'équation homogène associée à $\rm (E)$.
L'ensemble des solutions sur $\rm I$ de l'équation homogène est un sous-espace vectoriel de $\rm C^1(I,E)$ de dimension $\rm n=\dim E$.

Méthode :

Pour résoudre $\rm (E)$ une fois le type d'équation identifié :

  • On résout l'équation homogène $\rm (E_0)$ pour obtenir la solution homogène $x_0$.
  • On cherche une solution particulière à $\rm (E)$ : $x_p$.
  • La solution générale de $\rm (E)$ est $x(\mathrm t)=x_0(\mathrm t)+x_\rm p(t)$.

Méthode 2 : Résoudre des équations linéaires d'ordre 1 à coefficients constants

Définition :

Une équation différentielle linéaire vectorielle d'ordre $\bf 1$ à coefficients constants est de la forme $\mathrm{(E)} : x'=\mathrm a(x)+\mathrm{b(t)}$ avec $\rm a \in \mathcal{L}(E)$, $\rm b$ fonction continue de $\rm I$ vers $\rm E$ et pour inconnue $x$ fonction dérivable de $\rm I$ vers $\rm E$.

Théorème :

Soit $x_0\in \rm E$.
Le problème de Cauchy $\left\{\begin{array}{ll} x'=\mathrm a(x) & \scriptstyle\rm (E) \\ x(\mathrm t_0)=x_0 & \scriptstyle\text{(condition initiale)}\end{array}\right.$ possède une unique solution définie par $x(\mathrm t)=\exp((\mathrm {t-t_0)\cdot a})(x_0)$.

Remarque :

Pour tout $\rm a\in \mathcal{L} (E)$ :

  • $\rm \exp(a)=\displaystyle\sum_{k=0}^{+\infty}\frac{1}{k !}a^k$ $\rm \in \mathcal{L} (E)$
  • $\rm t\mapsto \exp(t\cdot a)$ est de classe $\rm C^{\infty}$ et $\displaystyle\rm \frac{d}{dt}(exp(t\cdot a))=a \circ exp(t \cdot a)$.

Cas matriciel :

La traduction matricielle de l'équation donne (avec $\rm t_0=0$) : $\rm X'=AX$ avec $\rm X(0)=X_0$.
La solution est $\rm X(t)=\exp(t\cdot A)X_0$.

📄 Annale PREMIUM

PREMIUM

Annales Banque Agro-Véto 2016 (Mathématiques BCPST)

NOMAD EDUCATION

L’app unique pour réussir !