Soient $\rm E$ un $\mathbb K$-espace vectoriel non réduit à $\rm \{0_E\}$ et $\rm u$ un endomorphisme de $\rm E$.

Méthode 1 : Identifier les éléments propres d’un endomorphisme

  • $x$ est vecteur propre de $u$ si : $x\neq 0_\rm E $ et il existe $\lambda \in \mathbb K$ tel que $u(x)=\lambda x$.
  • $\lambda$ est valeur propre de $u$.

Le spectre de $u$ noté $\mathrm{Sp}(u)$ est l’ensemble des valeurs propres de $u$.
$\mathrm E_{\lambda}(u)=\rm \ker(u-\lambda Id_E)$ est le sous-espace propre associé à la valeur propre $\lambda$.

  • Un endomorphisme $u\in \rm L(E)$ possède au plus $\rm \dim (E)$ valeurs propres.

Méthode 2 : Identifier les éléments propres d’une matrice carrée

  • Les valeurs propres de $\rm A\in M_n(\mathbb K)$ sont les racines du polynôme caractéristique de $\rm A$ : 

$$\rm \chi_A \text{ avec } \chi_A(X)=\det(XI_n-A)$$

  • Le polynôme caractéristique de $A$ peut être calculé avec la formule suivante :

$$\rm \chi_A(X)=X^n-tr(A)X^{n-1}+...+(-1)^n \det(A)$$

Propriété :

Les valeurs propres complexes d’une matrice réelle sont deux à deux conjuguées.

Méthode 3 : Savoir si un endomorphisme $u$ $\bf{\in L(E)}$ est diagonalisable

  • Avec la définition :

Un endomorphisme $u$ est diagonalisable s’il existe une base de $\rm E$ dans laquelle sa matrice est diagonale. Cette base est appelée base de diagonalisation de $u$ ou base propre de $u$.

  • En utilisant le théorème suivant :

Soit $u\in \rm L(E)$. Il y a équivalence entre les propositions suivantes :

    • $u$ est diagonalisable.
    • Il existe une base de $\rm E$ formée de vecteurs propres de $u$.
    • $\rm E$ est la somme directe des sous-espaces propres de $u$ c’est-à-dire $\mathrm E=\displaystyle\oplus_{\lambda \in \mathrm{Sp}(u)}\mathrm E_{\lambda}(u)$
    • $\displaystyle\sum_{\lambda \in \mathrm{Sp}(u)}\dim E_{\lambda}(u)=\dim \mathrm E$

Méthode 4 : Savoir si une matrice $\bf{A \in M_n(\mathbb K)}$ est diagonalisable

  • Avec la définition :

Une matrice $\rm A\in M_n(\mathbb K)$ est diagonalisable si elle est semblable à une matrice diagonale c’est-à-dire s’il existe $\rm P\in GL_n(\mathbb K)$ et $\rm D\in D_n(\mathbb K)$ telles que $\rm P^{-1}AP=D$.

  • En utilisant le lien avec l’endomorphisme :

Soit $\rm A$ la matrice d’un endomorphisme $u$ dans une base de $\rm E$.
Il y a équivalence entre les propositions suivantes :

    • $\rm A$ est diagonalisable
    • $u$ est diagonalisable

Théorème :

Si $\rm A\in M_n(\mathbb K)$ admet $\rm n$ valeurs propres distinctes alors $\rm A$ est diagonalisable et ses sous-espaces propres sont des droites vectorielles.

Méthode 5 : Polynôme annulateur

  • Soit $u$ $\bf{\in L(E)}$ un endomorphisme.

$\rm P\in \mathbb K[X]$ est un polynôme annulateur de $u$ si $\mathrm P(u)=0$ ($0$ étant l’application nulle).

  • Si $\bf P$ annule $u$, toute valeur propre de $u$ est racine de $\bf P$.

Théorème de Cayley-Hamilton :

Le polynôme caractéristique de $u$ $\rm \chi_u$ est annulateur de $u$

Théorème :

Il y a équivalence entre :

    • $u$ est diagonalisable
    • $u$ annule un polynôme scindé à racines simples
    • Le polynôme minimal de $u$ est scindé à racines simples $(\pi_u=\displaystyle \prod_{\lambda \in \mathrm{Sp}(u)}(X-\lambda))$