Qu’est-ce qu’un état non stationnaire ?

Contrairement à un état stationnaire, dans le cas d’une onde non stationnaire, le carré du module de la fonction d’onde, c’est-à-dire la densité de probabilité de présence, dépend du temps.

 

Qu’est-ce que le principe de superposition en mécanique quantique ?

D’après le principe de superposition, pour un système donné, la superposition d’états possibles est un état possible.

Mathématiquement, si Ψ1 et Ψ2 vérifient l’équation de Schrödinger alors αΨ1+βΨ2 la vérifie aussi quelques soient les constantes α et β.

Physiquement, cela implique qu’une particule quantique peut être simultanément à plusieurs endroits. Ce phénomène n’est pas exclusif à la position mais à toute quantité observable comme la vitesse, la quantité de mouvement, le spin… D’où la fameuse expérience de pensée du Chat de Schrödinger, à la fois mort et vivant.

 

Comment peut-on exprimer mathématiquement un état non stationnaire ?

Il faut savoir que les états stationnaires forment une base des fonctions d’onde possibles pour une particule soumise à un potentiel ne dépendant pas du temps.

Ainsi, tout état quantique (dont les états non stationnaires) peut être décrit par une fonction d’onde pouvant s’écrire comme une combinaison linéaire d’états stationnaires :

Ψ(x,t)=ncnφn(x)eiEnt/

Avec cn des coefficients de pondérations

En l’énergie du état stationnaire de la base.

 

Superposition de deux états stationnaires ?

Si l’on calcule la fonction d’onde obtenue en superposant deux états stationnaires d’énergie et , on obtient une fonction d’onde dont le module dépend du temps.

Plus précisément, on obtient des oscillations de la densité de probabilité de présence, , avec une pulsation caractéristique .

 

Remarque : La particule quantique est dans deux états superposés d’énergie et mais, si on mesure l’énergie de la particule, on ne peut obtenir que ou .

 

Superposition de plusieurs états stationnaires

La superposition de plusieurs états stationnaires mène aussi à une dépendance temporelle de . Plus précisément, la superposition de plusieurs états stationnaires engendre un état non stationnaire évoluant périodiquement.