Fonction carrée
$\displaystyle\lim_{x \to -\infty} x^2 = +\infty$ ; $\displaystyle\lim_{x \to +\infty} x^2 = +\infty$.
Fonction cube
$\displaystyle\lim_{x \to -\infty} x^3 = -\infty$ ; $\displaystyle\lim_{x \to +\infty} x^3 = +\infty$.
Fonction inverse
$\displaystyle\lim_{x \to -\infty} \frac{1}{x}$ = 0 ; $\displaystyle\lim_{x \to 0^-} \frac{1}{x} = -\infty$ ; $\displaystyle\lim_{x \to 0^+} \frac{1}{x} = +\infty$ ; $\displaystyle\lim_{x \to +\infty} \frac{1}{x} = 0$.
Fonction logarithme népérien
$\displaystyle\lim_{x \to 0^+} \ln(x) = -\infty$ ; $\displaystyle\lim_{x \to +\infty} \ln(x) = +\infty$.
$\displaystyle\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$ pour tout $n\in \mathbb{N}^*$. (croissances comparées)
Fonction exponentielle
$\displaystyle\lim_{x \to -\infty} \mathrm e^x = 0$ ; $\displaystyle\lim_{x \to +\infty} \mathrm e^x = +\infty$.
$\displaystyle\lim_{x \to +\infty} \frac{\mathrm e^x}{x^n} = +\infty$ pour tout $n\in \mathbb{N}^*$ (croissances comparées).
Composée de limites
Pour $a$, $b$ et $l$ des nombres réels, $-\infty$ ou $+\infty$ :
si $\displaystyle\lim_{x \to a} u(x) = b$ et $\displaystyle\lim_{y \to b} f(y) = l$, alors $\displaystyle\lim_{x \to a} f(u(x)) = l$.
Exemples :
$\displaystyle\lim_{x \to +\infty} -4x = -\infty$ et $\displaystyle\lim_{y \to -\infty} \mathrm e^y = 0$ donc $\displaystyle\lim_{x \to +\infty} \mathrm e^{-4x} = 0$.
$\displaystyle\lim_{x \to +\infty} \frac{1}{x} = 0^+$ et $\displaystyle\lim_{y \to 0^+} \ln(y) = -\infty$ donc $\displaystyle\lim_{x \to +\infty} \ln\left(\frac{1}{x}\right) = -\infty$.