Utiliser la définition d’un anneau :
$\rm (A,+)$ est un groupe abélien de neutre $\rm 0_A$
$\times$ est associative et possède un neutre $\rm 1_A$
$\times$ est distributive sur $+$ : pour tous $\rm a,b,c \in A$, $\rm a(b+c)=ab+ac$ et $\rm (b+c)a=ba+ca$.
Identifier $\bf A$ comme un produit d’anneaux :
Soient $\rm (A_1,+,\times),\ldots,(A_n,+,\times)$ des anneaux avec pour éléments neutres $\rm 0_{A_1},\ldots,0_{A_n}$ et $\rm 1_{A_1},\ldots,1_{A_n}$, alors $\rm A=A_1 \times \ldots \times A_n$ (muni des lois définies par $(x_1,\ldots,x_\mathrm n) + (y_1,\ldots,y_\mathrm n)$ $=(x_1+ y_1,\ldots,x_\mathrm n + y_\mathrm n)$ et $(x_1,\ldots,x_\mathrm n) \times (y_1,\ldots,y_\mathrm n)$ $=(x_1\times y_1,\ldots,x_\mathrm n \times y_\mathrm n)$) est un anneau de neutres $\rm 0_A=(0_{A_1},\ldots,0_{A_n})$ et $\rm 1_A=(1_{A_1},\ldots,1_{A_n})$.
Identifier $\bf A$ comme un anneau connu :
$(\mathbb C,+,\times)$, $(\mathbb R, +,\times)$, $(\mathbb Z, +,\times)$ sont des anneaux commutatifs ($\times$ est commutative) de neutres $0$ et $1$.
Identifier $\bf A$ comme le sous-anneau d’un anneau :
Soit $\rm B$ un sous-anneau de $\rm (A,+,\times)$ muni des lois $+$ et $\times$ définies par restriction des lois sur $\rm A$.
Alors $\rm B$ est un anneau de mêmes neutres que $\rm A$.
Remarque :
$\rm B$, partie de $\rm A$, est un sous-anneau de $\rm A$ si :
- $\rm 1_A \in B$
- Pour tous $x,y \in \rm B$, $xy \in \rm B$
- Pour tous $x,y \in \rm B$, $x-y \in \rm B$