On considère une fonction $f$ définie sur un intervalle $\rm I$.
Dérivabilité en un point :
La fonction $f$ est dérivable en un point $x_0$ de l'intervalle $\rm I$ si le taux de variation $\displaystyle{\Delta(x) = \frac{f(x)-f(x_0)}{x-x_0}}$ admet une limite finie $l$ lorsque $x \rightarrow x_0$.
On pose $h=x-x_0$ et donc $x = x_0+h$. Alors $f$ est dérivable en $x_0$ si et seulement si le taux de variation $\displaystyle{\Delta(x_0+h) = \frac{f(x_0+h)-f(x_0)}{h}}$ admet une limite finie $l$ lorsque $h \rightarrow 0$.
Cette limite se note $f'(x_0)$ et s'appelle le nombre dérivée de $f$ en $x_0$. Il est égal à la pente de la tangente en $x_0$.
Dérivabilité sur un intervalle :
Une fonction $f$ est dérivable sur un intervalle $\rm I$ si $f$ est dérivable en tout point de cet intervalle.
Remarque : soit $f:[a,b] \rightarrow {\Bbb R}$. Soit $c \in ]a,b[$. Si $f$ est dérivable sur $[a,c]$ et $f$ est dérivable sur $[c,b]$ alors $f$ n'est pas forcément dérivable sur la réunion $[a,c] \cup [c,b] = [a,b]$.
Car dire que $f$ est dérivable sur $[a,c]$ veut dire que $f$ est seulement dérivable à gauche de $c$ c'est-à-dire que la limite de $\displaystyle{\Delta(c+h) = \frac{f(c+h)-f(c)}{h}}$ existe quand $h$ tend vers $0^-$.
Et $f$ est dérivable sur $[c,b]$ veut dire que $f$ est seulement dérivable à droite de $c$, c'est-à-dire que la limite de $\displaystyle{\Delta(c+h) = \frac{f(c+h)-f(c)}{h}}$ existe quand $h$ tend vers $0^+$.
Mais les deux limites ne sont pas forcément les mêmes de sorte que $f$ n'est pas forcément dérivable en $c$.
Théorème : la dérivabilité implique la continuité.
La réciproque est fausse. Par exemple, la fonction $x \mapsto |x|$ est continue sur ${\Bbb R}$ mais pas dérivable sur ${\Bbb R}$ car par dérivable en $0$.
Comment étudier la continuité/dérivabilité d'une fonction définie par morceaux ?
Par exemple : étudions la dérivabilité de la fonction $f$ définie par $\displaystyle f(x) = \exp\left(-\frac{1}{x^2}\right)$ si $x \neq 0$ et $f(0)=0$.
- Sur ${\Bbb R}^*$, la fonction est la composée de la fonction exponentielle (dérivable sur ${\Bbb R}$) et de la fonction $x \mapsto 1/x^2$ (dérivable sur ${\Bbb R}^*$) donc par composition $f$ est dérivable sur ${\Bbb R}^*$.
- Ensuite, on étudie la dérivabilité au point $0$. Le taux de variation est $\displaystyle \Delta(x) = \frac{f(x)-f(0)}{x-0}$ $\displaystyle = \frac{f(x)}{x} = \frac{1}{x} \exp\left(-\frac{1}{x^2}\right)$.
On effectue le changement de variable $\displaystyle{y = \frac{1}{x}}$. On a alors $\Delta(x) = ye^{-y^2}$. Lorsque $x$ tend vers $0$, $y$ tend vers $\pm \infty$. Par croissance comparée, $\Delta(x)$ tend vers $0$ donc la fonction $f$ est dérivable en $0$ et $f'(0)=0$ (la limite du taux de variation). - Synthèse : $f$ est dérivable sur ${\Bbb R}^*$ et $f$ est dérivable en $0$ donc $f$ est dérivable sur ${\Bbb R}$.